Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

It has been established that a total of 250 microg of monoclonal anti-mouse CD3 F(ab')(2) fragments, administered daily (50 microg per dose), induces remission of diabetes in the non-obese diabetic (NOD) mouse model of autoimmune diabetes by preventing beta cells from undergoing further autoimmune attack. We evaluated lower-dose regimens of monoclonal anti-CD3 F(ab')(2) in diabetic NOD mice for their efficacy and associated pharmacodynamic (PD) effects, including CD3-T-cell receptor (TCR) complex modulation, complete blood counts and proportions of circulating CD4(+), CD8(+) and CD4(+) FoxP3(+) T cells. Four doses of 2 microg (total dose 8 microg) induced 53% remission of diabetes, similarly to the 250 microg dose regimen, whereas four doses of 1 microg induced only 16% remission. While the 250 microg dose regimen produced nearly complete and sustained modulation of the CD3 -TCR complex, lower doses, spaced 3 days apart, which induced similar remission rates, elicited patterns of transient and partial modulation. In treated mice, the proportions of circulating CD4(+) and CD8(+) T cells decreased, whereas the proportions of CD4(+) FoxP3(+) T cells increased; these effects were transient. Mice with greater residual beta-cell function, estimated using blood glucose and C-peptide levels at the initiation of treatment, were more likely to enter remission than mice with more advanced disease. Thus, lower doses of monoclonal anti-CD3 that produced only partial and transient modulation of the CD3-TCR complex induced remission rates comparable to higher doses of monoclonal anti-CD3. Accordingly, in a clinical setting, lower-dose regimens may be efficacious and may also improve the safety profile of therapy with monoclonal anti-CD3, potentially including reductions in cytokine release-related syndromes and maintenance of pathogen-specific immunosurveillance during treatment.

Original publication




Journal article



Publication Date





103 - 113


Animals, Antibodies, Monoclonal, CD3 Complex, CD4-Positive T-Lymphocytes, CD8-Positive T-Lymphocytes, Cell Separation, Diabetes Mellitus, Type 1, Dose-Response Relationship, Drug, Female, Flow Cytometry, Mice, Mice, Inbred BALB C, Mice, Inbred NOD, Pancreas, Remission Induction, T-Lymphocyte Subsets