Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Hypoxia-inducible factor (HIF) controls an extensive range of adaptive responses to hypoxia. To better understand this transcriptional cascade we performed genome-wide chromatin immunoprecipitation using antibodies to two major HIF-alpha subunits, and correlated the results with genome-wide transcript profiling. Within a tiled promoter array we identified 546 and 143 sequences that bound, respectively, to HIF-1alpha or HIF-2alpha at high stringency. Analysis of these sequences confirmed an identical core binding motif for HIF-1alpha and HIF-2alpha (RCGTG) but demonstrated that binding to this motif was highly selective, with binding enriched at distinct regions both upstream and downstream of the transcriptional start. Comparison of HIF-promoter binding data with bidirectional HIF-dependent changes in transcript expression indicated that whereas a substantial proportion of positive responses (>20% across all significantly regulated genes) are direct, HIF-dependent gene suppression is almost entirely indirect. Comparison of HIF-1alpha- versus HIF-2alpha-binding sites revealed that whereas some loci bound HIF-1alpha in isolation, many bound both isoforms with similar affinity. Despite high-affinity binding to multiple promoters, HIF-2alpha contributed to few, if any, of the transcriptional responses to acute hypoxia at these loci. Given emerging evidence for biologically distinct functions of HIF-1alpha versus HIF-2alpha understanding the mechanisms restricting HIF-2alpha activity will be of interest.

Original publication




Journal article


J Biol Chem

Publication Date





16767 - 16775


Base Sequence, Basic Helix-Loop-Helix Transcription Factors, Binding Sites, Cell Hypoxia, Cell Line, Tumor, Chromatin Immunoprecipitation, DNA, Neoplasm, Female, Gene Expression Profiling, Genome-Wide Association Study, Humans, Hypoxia-Inducible Factor 1, alpha Subunit, Oligonucleotide Array Sequence Analysis, Promoter Regions, Genetic, Protein Binding