Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The predominant model for bacterial pandemics is the emergence of a virulent variant that diversifies as it spreads in human populations. We investigated a 40-year meningococcal disease pandemic caused by the hyper-invasive ET-5/ST-32 complex. METHODS: A global collection of Neisseria meningitidis isolates dating from 1969 to 2008 was whole genome sequenced (WGS) and analysed using a gene-by-gene approach at FINDINGS: Analysis of WGS data identified a 'Lineage 5 pan genome' of 1940 genes, 1752 (92%) of which were present in all isolates (Lineage 5 'core genome'). Genetic diversity, which was mostly generated by horizontal gene transfer, was unevenly distributed in the genome; however, genealogical analysis of diverse and conserved core genes, accessory genes, and antigen encoding genes, robustly identified a star phylogeny with a number of sub-lineages. Most European and American isolates belonged to one of two closely related sub-lineages, which had diversified before the identification of the pandemic in the 1970s. A third, genetically more diverse sub-lineage, was associated with Asian isolates. Several isolates had acquired DNA from the related gonococcus. INTERPRETATION: These data were inconsistent with a single point of origin followed by pandemic spread, rather suggesting that the sub-lineages had diversified and spread by asymptomatic transmission, with multiple distinct strains causing localised hyperendemic outbreaks.

Original publication




Journal article



Publication Date





234 - 243


Evolution, Genome sequencing, Neisseria meningitidis, Serogroup B