Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Modified vaccinia virus Ankara (MVA) is a highly attenuated strain of vaccinia virus, which has been used as a recombinant vaccine vector in many vaccine development programmes. The loss of many immunosuppressive and host-range genes resulted in a safe and immunogenic vaccine vector. However it still retains some immunomodulatory genes that may reduce MVA immunogenicity. Earlier reports demonstrated that the deletion of the A41L, B15R, C6L, or C12L open reading frames (ORFs) enhanced cellular immune responses in recombinant MVA (rMVA) by up to 2-fold. However, previously, we showed that deletion of the C12L, A44L, A46R, B7R, or B15R ORFs from rMVA, using MVA-BAC recombineering technology, did not enhance rMVA immunogenicity at either peak or memory cellular immune responses. Here, we extend our previous study to examine the effect of deleting clusters of genes on rMVA cellular immunogenicity. Two clusters of fifteen genes were deleted in one rMVA mutant that encodes either the 85A antigen of Mycobacterium tuberculosis or an immunodominant H2-Kd-restricted murine malaria epitope (pb9). The deletion mutants were tested in prime only or prime and boost vaccination regimens. The responses showed no improved peak or memory CD8+ T cell frequencies. Our results suggest that the reported small increases in MVA deletion mutants could not be replicated with different antigens, or epitopes. Therefore, the gene deletion strategy may not be taken as a generic approach for improving the immunogenicity of MVA-based vaccines, and should be carefully assessed for every individual recombinant antigen.

Original publication

DOI

10.1371/journal.pone.0128626

Type

Journal article

Journal

PLoS One

Publication Date

2015

Volume

10

Keywords

Animals, Antigens, Viral, Genes, Viral, Mice, Inbred BALB C, Open Reading Frames, Recombination, Genetic, Sequence Deletion, Vaccinia virus