Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Tumour resistance and dose-limiting toxic effects restrict treatment with most chemotherapeutic drugs. Elucidation of the mechanisms of these effects could permit the development of ways to improve the effectiveness of currently used agents until better therapeutic agents are developed. Several types of alkylating agents are used in the treatment of cancer. The DNA repair protein, O6-alkylguanine-DNA alkyltransferase (ATase) is an important cellular resistance mechanism to one class of alkylating agents. This enzyme removes potentially lethal damage from DNA and experiments in vitro and in vivo have shown that its inactivation can reverse resistance to such agents. Clinical trials of drugs that inactivate ATase are underway and early results indicate that they are active in tumour tissues. However, the ATase present in normal tissues, particularly bone marrow, is also inactivated, necessitating a reduction in the dose of alkylating agent. An important question is whether, in the absence of any tumour-specific delivery strategy, such drugs will improve therapeutic effectiveness; initial reports are not promising.

Type

Journal article

Journal

Lancet Oncol

Publication Date

01/2003

Volume

4

Pages

37 - 44

Keywords

Animals, Antineoplastic Agents, Alkylating, DNA Damage, DNA Repair, Drug Resistance, Neoplasm, Humans, Neoplasms, Nucleotidyltransferases, O(6)-Methylguanine-DNA Methyltransferase