Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In this paper we analyse stochastic models of the competition between two resource-limited cell populations which differ in their response to nutrient availability: the resident population exhibits a switch-like response behaviour while the invading population exhibits a bistable response. We investigate how noise in the intracellular regulatory pathways and cell motility influence the fate of the incumbent and invading populations. We focus initially on a spatially homogeneous system and study in detail the role of intracellular noise. We show that in such well-mixed systems, two distinct regimes exist: In the low (intracellular) noise limit, the invader has the ability to invade the resident population, whereas in the high noise regime competition between the two populations is found to be neutral and, in accordance with neutral evolution theory, invasion is a random event. Careful examination of the system dynamics leads us to conclude that (i) even if the invader is unable to invade, the distribution of survival times, PS(t), has a fat-tail behaviour (PS(t) ∼ t(-1)) which implies that small colonies of mutants can coexist with the resident population for arbitrarily long times, and (ii) the bistable structure of the invading population increases the stability of the latent population, thus increasing their long-term likelihood of survival, by decreasing the intensity of the noise at the population level. We also examine the effects of spatial inhomogeneity. In the low noise limit we find that cell motility is positively correlated with the aggressiveness of the invader as defined by the time the invader takes to invade the resident population: the faster the invasion, the more aggressive the invader.

Original publication

DOI

10.1007/s00285-015-0883-2

Type

Journal article

Journal

J Math Biol

Publication Date

01/2016

Volume

72

Pages

123 - 156

Keywords

Invasion, Latency, Motility, Noise, Algorithms, Cell Movement, Cell Physiological Phenomena, Cell Proliferation, Mathematical Concepts, Models, Biological, Signal Transduction, Stochastic Processes, Systems Biology