Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We develop a model of wound healing in the framework of finite elasticity, focussing our attention on the processes of growth and contraction in the dermal layer of the skin. The dermal tissue is treated as a hyperelastic cylinder that surrounds the wound and is subject to symmetric deformations. By considering the initial recoil that is observed upon the application of a circular wound, we estimate the degree of residual tension in the skin and build an evolution law for mechanosensitive growth of the dermal tissue. Contraction of the wound is governed by a phenomenological law in which radial pressure is prescribed at the wound edge. The model reproduces three main phases of the healing process. Initially, the wound recoils due to residual stress in the surrounding tissue; the wound then heals as a result of contraction and growth; and finally, healing slows as contraction and growth decrease. Over a longer time period, the surrounding tissue remodels, returning to the residually stressed state. We identify the steady state growth profile associated with this remodelled state. The model is then used to predict the outcome of rewounding experiments designed to quantify the amount of stress in the tissue, and also to simulate the application of pressure treatments.

Original publication

DOI

10.1007/s10237-015-0716-7

Type

Journal article

Journal

Biomech Model Mechanobiol

Publication Date

06/2016

Volume

15

Pages

663 - 681

Keywords

Contraction, Dermis, Finite elasticity, Volumetric growth, Wound healing, Anisotropy, Dermis, Elastic Modulus, Elasticity, Kinetics, Models, Biological, Numerical Analysis, Computer-Assisted, Stress, Mechanical, Wound Healing