Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Homo-oligomerization of the nucleoprotein (NP) of influenza A virus is crucial for providing a major structural framework for the assembly of viral ribonucleoprotein (RNP) particles. The nucleoprotein is also essential for transcription and replication during the virus life cycle. In the H5N1 NP structure, the tail loop region is important for NP to form oligomers. Here, by an RNP reconstitution assay, we identified eight NP mutants that had different degrees of defects in forming functional RNPs, with the RNP activities of four mutants being totally abolished (E339A, V408S P410S, R416A, and L418S P419S mutants) and the RNP activities of the other four mutants being more than 50% decreased (R267A, I406S, R422A, and E449A mutants). Further characterization by static light scattering showed that the totally defective protein variants existed as monomers in vitro, deviating from the trimeric/oligomeric form of wild-type NP. The I406S, R422A, and E449A variants existed as a mixture of unstable oligomers, thus resulting in a reduction of RNP activity. Although the R267A variant existed as a monomer in vitro, it resumed an oligomeric form upon the addition of RNA and retained a certain degree of RNP activity. Our data suggest that there are three factors that govern the NP oligomerization event: (i) interaction between the tail loop and the insertion groove, (ii) maintenance of the tail loop conformation, and (iii) stabilization of the NP homo-oligomer. The work presented here provides information for the design of NP inhibitors for combating influenza virus infection.

Original publication

DOI

10.1128/JVI.02474-09

Type

Journal article

Journal

J Virol

Publication Date

07/2010

Volume

84

Pages

7337 - 7345

Keywords

Amino Acids, Cell Line, Humans, Influenza A Virus, H5N1 Subtype, Models, Molecular, Mutation, Protein Conformation, Protein Multimerization, RNA-Binding Proteins, Viral Core Proteins