Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

© 2015 Elsevier Inc. The modeling of pattern formation in biological systems using various models of reaction-diffusion type has been an active research topic for many years. We here look at a parameter identification (or PDE-constrained optimization) problem where the Schnakenberg and Gierer-Meinhardt equations, two well-known pattern formation models, form the constraints to an objective function. Our main focus is on the efficient solution of the associated nonlinear programming problems via a Lagrange-Newton scheme. In particular we focus on the fast and robust solution of the resulting large linear systems, which are of saddle point form. We illustrate this by considering several two- and three-dimensional setups for both models. Additionally, we discuss an image-driven formulation that allows us to identify parameters of the model to match an observed quantity obtained from an image.

Original publication

DOI

10.1016/j.jcp.2015.10.006

Type

Journal article

Journal

Journal of Computational Physics

Publication Date

01/01/2016

Volume

304

Pages

27 - 45