Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A number of human tumor antigens have been characterized recently using cytolytic T lymphocytes (CTL) as screening tools. Some of them are encoded by MAGE-type genes, which are silent in normal tissues except in male germ cells, but are activated in a variety of tumors. These tumor-specific shared antigens appear to be promising targets for cancer immunotherapy. However, the choice of these antigens as targets has been questioned because of the lack of direct evidence that in vivo responses against such antigens can lead to tumor rejection. The antigen encoded by the mouse gene P1A represents the only available animal model system for MAGE-type tumor antigens. We show here that mice immunized by injection of L1210 leukemia cells expressing P1A and B7-1 (L1210.P1A.B7-1) are efficiently protected against a challenge with a lethal dose of mastocytoma P815 tumor cells, which express P1A. Mice immunized with L1210 cells expressing B7-1 but not P1A were not protected. Furthermore, we observed that P1A-transgenic mice, which are tolerant to P1A, were not protected after immunization with L1210.P1A.B7-1. These results demonstrate that the immune response to P1A is the major component of the tumor rejection response observed in normal mice, and support the use of tumor-specific shared antigens as targets for the immunotherapy of human cancer.

Original publication




Journal article


Eur J Immunol

Publication Date





4010 - 4019


Animals, Antigens, Neoplasm, B7-1 Antigen, Cytotoxicity, Immunologic, Humans, Leukemia, Experimental, Male, Mice, Mice, Transgenic, T-Lymphocytes, Cytotoxic