Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Prostate cancer possesses several characteristics that make it a suitable candidate for immunotherapy; however, prostate cancer vaccines to date demonstrate modest efficacy and low immunogenicity. The goal of the present pre-clinical study was to explore the immunogenic properties and protective efficacy of a novel prostate cancer immunotherapy based on the heterologous prime-boost viral-vectored vaccination platform. The simian adenovirus, ChAdOx1, and modified vaccinia Ankara virus, MVA, encoding a prostate cancer-associated antigen, the six transmembrane epithelial antigen of the prostate 1 (STEAP1), induced strong sustained antigen-specific CD8+ T-cell responses in C57BL/6 and BALB/c male mice. Unexpectedly, the high vaccine immunogenicity translated into relatively low protective efficacy in the murine transplantable and spontaneous models of prostate cancer. A combination of the vaccine with PD-1 blocking antibody significantly improved survival of the animals, with 80 % of mice remaining tumour-free. These results indicate that the ChAdOx1-MVA vaccination regime targeting STEAP1 combined with PD-1 therapy might have high therapeutic potential in the clinic.


Journal article


Cancer immunology, immunotherapy : CII

Publication Date



The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.