Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Loss of CpG dinucleotides in genomic DNA through methylation-induced mutation is characteristic of vertebrates and plants. However, these and other eukaryotic phyla show a range of other dinucleotide frequency biases with currently uncharacterized underlying mutational or selection mechanisms. We developed a parameterized Markov process to identify what neighbour context-dependent mutations best accounted for patterns of dinucleotide frequency biases in genomic and cytoplasmically expressed mRNA sequences of different vertebrates, other eukaryotic groups and RNA viruses that infect them. RESULTS: Consistently, 11- to 14-fold greater frequencies of the methylation-associated mutation of C to T upstream of G (depicted as C→T,G) than other transitions best modelled dinucleotide frequencies in mammalian genomic DNA. However, further mutations such as G→T,T (5-fold greater than the default transversion rate) were required to account for the full spectrum of dinucleotide frequencies in mammalian sequence datasets. Consistent with modeling predictions for these two mutations, instability of both CpG and CpT dinucleotides was identified through SNP frequency analysis of human DNA sequences. Different sets of context-dependent mutations were modelled in other eukaryotes with non-methylated genomic DNA. In contrast to genomic DNA, best-fit models of dinucleotide frequencies in transcribed RNA sequences expressed in the cytoplasm from all organisms were dominated by mutations that eliminated UpA dinucleotides, observations consistent with cytoplasmically driven selection for mRNA stability. Surprisingly, mRNA sequences from organisms with methylated genomes showed evidence for additional selection against CpG through further context-dependent mutations (eg. C→A,G). Similar mutation or selection processes were identified among single-stranded mammalian RNA viruses; these potentially account for their previously described but unexplained under-representations of CpG and UpA dinucleotides. CONCLUSIONS: Methods we have developed identify mutational processes and selection pressures in organisms that provide new insights into nucleotide compositional constraints and a wealth of biochemical and evolutionarily testable predictions for the future.

Original publication

DOI

10.1186/1471-2164-14-610

Type

Journal article

Journal

BMC Genomics

Publication Date

10/09/2013

Volume

14

Keywords

Animals, Base Composition, CpG Islands, Cytoplasm, DNA Methylation, Humans, Markov Chains, Models, Genetic, Mutation, RNA Viruses, RNA, Messenger, Selection, Genetic