Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A highly sensitive and rapid method for routinely screening large numbers of donated blood units for parvovirus B19 by the polymerase chain reaction (PCR) was developed. Over a 3-month trial period in Edinburgh, B19 DNA was detected in 6 of 20,000 consecutive units of blood (0.03%), in concentrations ranging from 2.4 x 10(4) to 5 x 10(10) copies of viral DNA per ml. Seroconversion for B19-specific immunoglobulin M and immunoglobulin G and disappearance of circulating B19 DNA occurred in the interval between donation and recall in four of the five implicated donors who could be recalled. B19 DNA was detected in 18 of 27 separate batches of non-heat-treated factor VIII and IX concentrate manufactured from donated plasma unscreened for B19 DNA. Dry-heat treatment at 80 degrees C for 72 h reduced but did not always eliminate detectable B19 from factor VIII concentrates, consistent with recent observations that current methods for virus inactivation during blood product manufacture are insufficient to entirely eliminate B19 infectivity. The methods developed in this study for PCR screening could be applied routinely to prevent transfusion of B19 in blood and blood products and could play an important role in the prevention of iatrogenic transmission of infection. PCR screening could also be used for detection and exclusion of a range of other transmission-associated viruses for which current serological detection methods are only partially effective.

Type

Journal article

Journal

J Clin Microbiol

Publication Date

02/1993

Volume

31

Pages

323 - 328

Keywords

Base Sequence, Blood Donors, DNA, Viral, Erythema Infectiosum, Evaluation Studies as Topic, Humans, Mass Screening, Molecular Sequence Data, Parvovirus B19, Human, Polymerase Chain Reaction, Sensitivity and Specificity, Transfusion Reaction