Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Human herpesvirus type 1 (HHV-1) has a large double-stranded DNA genome of approximately 152 kbp that is structurally complex and GC-rich. This makes the assembly of HHV-1 whole genomes from short-read sequencing data technically challenging. To improve the assembly of HHV-1 genomes we have employed a hybrid genome assembly protocol using data from two sequencing technologies: the short-read Roche 454 and the long-read Oxford Nanopore MinION sequencers. We sequenced 18 HHV-1 cell culture-isolated clinical specimens collected from immunocompromised patients undergoing antiviral therapy. The susceptibility of the samples to several antivirals was determined by plaque reduction assay. Hybrid genome assembly resulted in a decrease in the number of contigs in 6 out of 7 samples and an increase in N(G)50 and N(G)75 of all 7 samples sequenced by both technologies. The approach also enhanced the detection of non-canonical contigs including a rearrangement between the unique (UL) and repeat (T/IRL) sequence regions of one sample that was not detectable by assembly of 454 reads alone. We detected several known and novel resistance-associated mutations in UL23 and UL30 genes. Genome-wide genetic variability ranged from <1% to 53% of amino acids in each gene exhibiting at least one substitution within the pool of samples. The UL23 gene had one of the highest genetic variabilities at 35.2% in keeping with its role in development of drug resistance. The assembly of accurate, full-length HHV-1 genomes will be useful in determining genetic determinants of drug resistance, virulence, pathogenesis and viral evolution. The numerous, complex repeat regions of the HHV-1 genome currently remain a barrier towards this goal.

Original publication

DOI

10.1371/journal.pone.0157600

Type

Journal article

Journal

PLoS One

Publication Date

2016

Volume

11

Keywords

Amino Acid Substitution, Animals, Antiviral Agents, Base Composition, Cercopithecus aethiops, Contig Mapping, DNA, Viral, Drug Resistance, Viral, Genome Size, Genome, Viral, Herpes Simplex, Herpesvirus 1, Human, High-Throughput Nucleotide Sequencing, Humans, Immunocompromised Host, Mutation, Vero Cells