Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The human leukocyte antigen (HLA) complex, encompassing 3.5 Mb of DNA from the centromeric HLA-DPB2 locus to the telomeric HLA-F locus on chromosome 6p21, encodes a major part of the genetic predisposition to develop type 1 diabetes, designated ’IDDMI.’ A primary role for allelic variation of the class II HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci has been established. However, studies of animals and humans have indicated that other, unmapped, major histocompatibility complex (MHC)-linked genes are participating in IDDM1. The strong linkage disequilibrium between genes in this complex makes mapping a difficult task. In the present paper, we report on the approach we have devised to circumvent the confounding effects of disequilibrium between class II alleles and alleles at other MHC loci. We have scanned 12 Mb of the MHC and flanking chromosome regions with microsatellite polymorphisms and analyzed the transmission of these marker alleles to diabetic probands from parents who were homozygous for the alleles of the HLA-DRB1, HLA-DQA1, and HLA- DQB1 genes. Our analysis, using three independent family sets, suggests the presence of an additional type I diabetes gene (or genes). This approach is useful for the analysis of other loci linked to common diseases, to verify if a candidate polymorphism can explain all of the association of a region or if the association is due to two or more loci in linkage disequilibrium with each other.

Original publication

DOI

10.1086/302283

Type

Journal article

Journal

American Journal of Human Genetics

Publication Date

01/12/1999

Volume

64

Pages

793 - 800