Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Despite the presence on band q13 of chromosome 11 of a number of genes predisposing individuals to various human diseases, most of this genomic region remains loosely mapped. Moreover, there is a relative dearth of yeast artificial chromosome (YAC) contigs from genome-wide studies: YACs are irregularly distributed over this chromosomal region and have not been arranged into contigs. We have thus undertaken fine-scale mapping of a 3.2-Mb region flanked by ACTN3 and FGF3. Since this region has demonstrated a high degree of YAC instability, we have established a framework contig by anchoring YACs and cosmids into a high-resolution physical map based on fluorescence in situ hybridization and long-range restriction mapping. The 3.2-Mb area studied includes the boundaries of regions thought to contain genes predisposing individuals to osteoporosis-pseudoglioma syndrome and insulin-dependent diabetes mellitus, as well as genes driving amplification events in human carcinomas. Another feature of this genomic area is that it cross-hybridizes to nonsyntenic regions of the genome. In addition, it spans the region where syntenic conservation with mouse chromosome 19 ends, making clones that we have anchored there valuable tools in understanding genome evolution.

Original publication

DOI

10.1006/geno.1996.4527

Type

Journal article

Journal

Genomics

Publication Date

15/02/1997

Volume

40

Pages

13 - 23

Keywords

Animals, Base Sequence, Cell Line, Chromosomes, Artificial, Yeast, Chromosomes, Human, Pair 11, Cosmids, DNA, Complementary, Genetic Markers, Humans, In Situ Hybridization, Fluorescence, Mice, Molecular Sequence Data, Restriction Mapping