Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

At least two loci that determine susceptibility to type 1 diabetes in the NOD mouse have been mapped to chromosome 1, Idd5.1 (insulin-dependent diabetes 5.1) and Idd5.2. In this study, using a series of novel NOD.B10 congenic strains, Idd5.1 has been defined to a 2.1-Mb region containing only four genes, Ctla4, Icos, Als2cr19, and Nrp2 (neuropilin-2), thereby excluding a major candidate gene, Cd28. Genomic sequence comparison of the two functional candidate genes, Ctla4 and Icos, from the B6 (resistant at Idd5.1) and the NOD (susceptible at Idd5.1) strains revealed 62 single nucleotide polymorphisms (SNPs), only two of which were in coding regions. One of these coding SNPs, base 77 of Ctla4 exon 2, is a synonymous SNP and has been correlated previously with type 1 diabetes susceptibility and differential expression of a CTLA-4 isoform. Additional expression studies in this work support the hypothesis that this SNP in exon 2 is the genetic variation causing the biological effects of Idd5.1. Analysis of additional congenic strains has also localized Idd5.2 to a small region (1.52 Mb) of chromosome 1, but in contrast to the Idd5.1 interval, Idd5.2 contains at least 45 genes. Notably, the Idd5.2 region still includes the functionally polymorphic Nramp1 gene. Future experiments to test the identity of Idd5.1 and Idd5.2 as Ctla4 and Nramp1, respectively, can now be justified using approaches to specifically alter or mimic the candidate causative SNPs.

Type

Journal article

Journal

J Immunol

Publication Date

01/07/2004

Volume

173

Pages

164 - 173

Keywords

Amino Acid Sequence, Animals, Antigens, CD, Antigens, Differentiation, Antigens, Differentiation, T-Lymphocyte, CTLA-4 Antigen, Cation Transport Proteins, Chromosome Mapping, Chromosomes, Human, Pair 2, Diabetes Mellitus, Type 1, Gene Expression Regulation, Humans, Inducible T-Cell Co-Stimulator Protein, Mice, Mice, Inbred NOD, Molecular Sequence Data, RNA, Messenger