Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Influenza pandemics require rapid deployment of effective vaccines for control. Adjuvants such as AS03 improve vaccine immunogenicity, but this mechanism is poorly understood. We used high-throughput B cell receptor sequencing of plasma cells produced following AS03-adjuvanted and non-adjuvanted 2009 pandemic H1N1 vaccination, as well as pre-pandemic seasonal influenza vaccination to elucidate the effect of the adjuvant on the humoral immune response. By analyzing mutation levels, it was possible to distinguish sequences from cells that were recently activated from naïve B cells from those that were activated by memory recall. We show that the adjuvant functions through two mechanisms. First, the adjuvant stimulates increased activation of naïve B cells, thus reducing immune interference with previous vaccine responses. Second, the adjuvant is able to increase the adaptability of the recalled cells to give improved specificity to the new vaccine antigen. We thus show how AS03 enhances pH1N1 immune responses, and reduces immune interference.

Original publication




Journal article


Sci Rep

Publication Date





Adjuvants, Immunologic, Adult, Antibodies, Viral, B-Lymphocytes, Double-Blind Method, Drug Combinations, Humans, Immunization Schedule, Influenza A Virus, H1N1 Subtype, Influenza Vaccines, Influenza, Human, Polysorbates, Squalene, Vaccination, alpha-Tocopherol