Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Tenascin-C (TNC) is a hexameric, multimodular extracellular matrix protein with several molecular forms that are created through alternative splicing and protein modifications. It is highly conserved amongst vertebrates, and molecular phylogeny indicates that it evolved before fibronectin. Tenascin-C has many extracellular binding partners, including matrix components, soluble factors and pathogens; it also influences cell phenotype directly through interactions with cell surface receptors. Tenascin-C protein synthesis is tightly regulated, with widespread protein distribution in embryonic tissues, but restricted distribution of tenascin-C in adult tissues. Tenascin-C is also expressed de novo during wound healing or in pathological conditions, including chronic inflammation and cancer. First described as a modulator of cell adhesion, tenascin-C also directs a plethora of cell signaling and gene expression programs by shaping mechanical and biochemical cues within the cellular microenvironment. Exploitment of the pathological expression and function of tenascin-C is emerging as a promising strategy to develop new diagnostic, therapeutic and bioengineering tools. In this Cell Science at a Glance article and the accompanying poster we provide a succinct and comprehensive overview of the structural and functional features of tenascin-C and its potential roles in developing embryos and under pathological conditions.

Original publication




Journal article


Journal of cell science

Publication Date





4321 - 4327


The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK


Animals, Humans, Disease, Tenascin, Protein Binding