Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The myxovirus resistance (Mx) proteins are interferon-induced dynamin GTPases that can inhibit a variety of viruses. Recently, MxB, but not MxA, was shown to restrict HIV-1 by an unknown mechanism that likely occurs in close proximity to the host cell nucleus and involves the viral capsid. Here, we present the crystal structure of MxB and reveal determinants involved in HIV-1 restriction. MxB adopts an extended antiparallel dimer and dimerization, but not higher-ordered oligomerization, is critical for restriction. Although MxB is structurally similar to MxA, the orientation of individual domains differs between MxA and MxB, and their antiviral functions rely on separate determinants, indicating distinct mechanisms for virus inhibition. Additionally, MxB directly binds the HIV-1 capsid, and this interaction depends on dimerization and the N terminus of MxB as well as the assembled capsid lattice. These insights establish a framework for understanding the mechanism by which MxB restricts HIV-1.

Original publication

DOI

10.1016/j.chom.2014.09.021

Type

Journal article

Journal

Cell Host Microbe

Publication Date

12/11/2014

Volume

16

Pages

627 - 638

Keywords

Capsid, Cell Line, Tumor, Crystallography, X-Ray, Gene Expression Regulation, HIV-1, Host-Pathogen Interactions, Humans, Microscopy, Confocal, Myxovirus Resistance Proteins, Protein Conformation, Protein Multimerization, Virus Assembly