Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Signal transduction in bacterial chemotaxis is initiated by the binding of extracellular ligands to a specialized family of methyl-accepting chemoreceptor proteins. Chemoreceptors cluster at distinct regions of the cell and form stable ternary complexes with the histidine autokinase CheA and the adapter protein CheW. Here we report the direct visualization and spatial organization of chemoreceptor arrays in intact Escherichia coli cells by using cryo-electron tomography and biochemical techniques. In wild-type cells, ternary complexes are arranged as an extended lattice, which may or may not be ordered, with significant variations in the size and specific location among cells in the same population. In the absence of CheA and CheW, chemoreceptors do not form observable clusters and are diffusely localized to the cell pole. At disproportionately high receptor levels, membrane invaginations containing nonfunctional, axially interacting receptor assemblies are formed. However, functional chemoreceptor arrays can be reestablished by increasing cellular levels of CheA and CheW. Our results demonstrate that chemotaxis in E. coli requires the presence of chemoreceptor arrays and that the formation of these arrays requires the scaffolding interactions of the signaling molecules CheA and CheW.

Original publication

DOI

10.1073/pnas.0610106104

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

06/03/2007

Volume

104

Pages

3777 - 3781

Keywords

Bacterial Proteins, Chemotaxis, Cluster Analysis, Cryoelectron Microscopy, Escherichia coli, Escherichia coli Proteins, Histidine Kinase, Ligands, Membrane Proteins, Methyl-Accepting Chemotaxis Proteins, Models, Biological, Plasmids, Signal Transduction