Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Structures have recently been solved at 8 A resolution for both Ca2+-ATPase from rabbit sarcoplasmic reticulum and H+-ATPase from Neurospora crassa. These cation pumps are two distantly related members of the family of P-type ATPases, which are thought to use similar mechanisms to generate ATP-dependent ion gradients across a variety of cellular membranes. We have undertaken a detailed comparison of the two structures in order to describe their similarities and differences as they bear on their mechanism of active transport. RESULTS: Our first important finding was that the arrangement of 10 transmembrane helices was remarkably similar in the two molecules. This structural homology strongly supports the notion that these pumps use the same basic mechanism to transport their respective ions. Despite this similarity in the membrane-spanning region, the cytoplasmic regions of the two molecules were very different, both in their disposition relative to the membrane and in the juxtaposition of their various subdomains. CONCLUSIONS: On the basis of the crystallization conditions, we propose that these two crystal structures represent different intermediates in the transport cycle, distinguished by whether cations are bound to their transport sites. Furthermore, we propose that the corresponding conformational change (E2 to E1 ) has two components: the first is an inclination of the main cytoplasmic mass by 20 degrees relative to the membrane-spanning domain; the second is a rearrangement of the domains comprising the cytoplasmic part of the molecules. Accordingly, we present a rough model for this important conformational change, which relays the effects of cation binding within the membrane-spanning domain to the nucleotide-binding site, thus initiating the transport cycle.


Journal article


Curr Biol

Publication Date





672 - 679


Animals, Calcium-Transporting ATPases, Neurospora crassa, Protein Conformation, Proton Pumps, Proton-Translocating ATPases, Rabbits, Structure-Activity Relationship