Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The calcium pump from sarcoplasmic reticulum (Ca2+-ATPase) is typical of the large family of P-type cation pumps. These couple ATP hydrolysis with cation transport, generating cation gradients across membranes. Ca2+-ATPase specifically maintains the low cytoplasmic calcium concentration of resting muscle by pumping calcium into the sarcoplasmic reticulum; subsequent release is used to initiate contraction. No high-resolution structure of a P-type pump has yet been determined, although a 14-A structure of Ca2+-ATPase, obtained by electron microscopy of frozen-hydrated, tubular crystals, showed a large cytoplasmic head connected to the transmembrane domain by a narrow stalk. We have now improved the resolution to 8A and can discern ten transmembrane alpha-helices, four of which continue into the stalk On the basis of constraints from transmembrane topology, site-directed mutagenesis and disulphide crosslinking, we have made tentative assignments for these alpha-helices within the amino-acid sequence. A distinct cavity leads to the putative calcium-binding site, providing a plausible path for calcium release to the lumen of the sarcoplasmic reticulum.

Original publication

DOI

10.1038/33959

Type

Journal article

Journal

Nature

Publication Date

23/04/1998

Volume

392

Pages

835 - 839

Keywords

Amino Acid Sequence, Animals, Calcium-Transporting ATPases, Crystallography, Image Processing, Computer-Assisted, Models, Molecular, Molecular Sequence Data, Protein Conformation, Rabbits, Rats, Saccharomyces cerevisiae, Sarcoplasmic Reticulum, Sheep