Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

DNA-based vaccines, alone or in combination with other sub-unit vaccination regimes, represent an alternative to live mycobacterial vaccines for protective immunization against tuberculosis. Here, we have used a murine immunization or Mycobacterium bovis aerosol challenge model to assess the immunogenicity and protective efficacy of mycobacterial DNA vaccines. Mice that received immunization with DNA constructs encoding M. bovis antigen 85A (Ag85-A) and arget(ESAT-6) produced measurable interferon-gamma (IFN-gamma) responses to CD4(+) T-cell epitope-peptide recall antigens in vitro. The magnitude of these responses was enhanced by co-delivery of a construct encoding murine cytokines (macrophage inhibitory protein (MIP)-1 alpha or interleukin(IL)-7), although they did not the match responses observed in mice that received Bacille Calmette-Guerin(BCG) immunisation. In contrast, DNA priming followed by boosting with modified vaccinia Ankara (MVA) vaccine (expressing M. tuberculosis Ag85-A) invoked higher IFN-gamma levels, with the most immunogenic regime of Ag85 or ESAT or IL-7 prime followed by MVA boost being of commensurate immunogenicity to BCG. Despite this, neither DNA alone nor DNA-prime or MVA boost regimes conferred measurable protection against aerosol challenge with virulent M. bovis. These data highlight both the promise and the shortcomings of new generation subunit tuberculosis vaccines, with particular emphasis on their potential as vaccines against M. bovis.

Original publication




Journal article


Immunol Cell Biol

Publication Date





651 - 657


Acyltransferases, Animals, Antigens, Bacterial, Bacterial Proteins, CD4-Positive T-Lymphocytes, Chemokine CCL3, Epitopes, T-Lymphocyte, Immunization, Secondary, Interferon-gamma, Interleukin-7, Mice, Mice, Inbred BALB C, Mycobacterium bovis, Plasmids, Tuberculosis Vaccines, Tuberculosis, Pulmonary, Vaccines, DNA, Viral Vaccines