Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Histopathology-based staging of colorectal cancer (CRC) has utility in assessing the prognosis of patient subtypes, but as yet cannot accurately predict individual patient's treatment response. Transcriptomics approaches, using array based or next generation sequencing (NGS) platforms, of formalin fixed paraffin embedded tissue can be harnessed to develop multi-gene biomarkers for predicting both prognosis and treatment response, leading to stratification of treatment. While transcriptomics can shape future biomarker development, currently <1% of published biomarkers become clinically validated tests, often due to poor study design or lack of independent validation. In this review of a large number of CRC transcriptional studies, we identify recurrent sources of technical variability that encompass collection, preservation and storage of malignant tissue, nucleic acid extraction, methods to quantitate RNA transcripts and data analysis pipelines. We propose a series of defined steps for removal of these confounding issues, to ultimately aid in the development of more robust clinical biomarkers.

Original publication




Journal article


Biochim Biophys Acta Rev Cancer

Publication Date





258 - 272


Biomarker, FFPE, Microarray, NGS, RNA profiling, Transcriptome, Biomarkers, Tumor, Colorectal Neoplasms, Humans, Prognosis, RNA, Transcription, Genetic, Transcriptome