Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Class I molecules of the major histocompatibility complex (MHC) bind and present peptides derived from the degradation of intracellular, often cytoplasmic, proteins, whereas class II molecules usually present proteins from the extracellular environment. It is not known how peptides derived from cytoplasmic proteins cross a membrane before presentation at the cell surface. But certain mutations in the MHC can prevent presentation of antigens with class I molecules. In addition, mutations possibly in the MHC can affect presentation by class II molecules. Here we report the finding of a new gene in the MHC that might have a role in antigen presentation and which is related to the ABC (ATP-binding cassette) superfamily of transporters. This superfamily includes the human multidrug-resistance protein, and a series of transporters from bacteria and eukaryotic cells capable of transporting a range of substrates, including peptides.

Original publication




Journal article



Publication Date





741 - 744


Amino Acid Sequence, Antigen-Presenting Cells, Base Sequence, Carrier Proteins, Cell Membrane, Chromosome Mapping, Chromosomes, Human, Pair 6, DNA, Drug Resistance, Gene Expression, Histocompatibility Antigens Class II, Humans, Molecular Sequence Data, RNA, Messenger, Tumor Cells, Cultured