Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We present a new algorithm for estimating parameters in reaction-diffusion systems that display pattern formation via the mechanism of diffusion-driven instability. A Modified Discrete Optimal Control Algorithm (MDOCA) is illustrated with the Schnakenberg and Gierer-Meinhardt reaction-diffusion systems using PDE constrained optimization techniques. The MDOCA algorithm is a modification of a standard variable step gradient algorithm that yields a huge saving in computational cost. The results of numerical experiments demonstrate that the algorithm accurately estimated key parameters associated with stationary target functions generated from the models themselves. Furthermore, the robustness of the algorithm was verified by performing experiments with target functions perturbed with various levels of additive noise. The MDOCA algorithm could have important applications in the mathematical modeling of realistic Turing systems when experimental data are available. © 2010.

Original publication

DOI

10.1016/j.jcp.2010.05.040

Type

Journal article

Journal

Journal of Computational Physics

Publication Date

01/09/2010

Volume

229

Pages

7058 - 7071