Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Indoleamine 2,3-dioxygenase (hIDO) is an enzyme that catalyzes the oxidative cleavage of the indole ring of l-tryptophan through the kynurenine pathway, thereby exerting immunosuppressive properties in inflammatory and tumoral tissues. The syntheses of 1-(2-fluoroethyl)-tryptophan (1-FETrp) and 1-((1-(2-fluoroethyl)-1H-1,2,3-triazol-4-yl)methyl)-tryptophan, two N (1)-fluoroalkylated tryptophan derivatives, are described here. In vitro enzymatic assays with these two new potential substrates of hIDO show that 1-FETrp is a good and specific substrate of hIDO. Therefore, its radioactive isotopomer, 1-[(18)F]FETrp, should be a molecule of choice to visualize tumoral and inflammatory tissues and/or to validate new potential inhibitors.

Original publication

DOI

10.1021/ml500385d

Type

Journal article

Journal

ACS Med Chem Lett

Publication Date

12/03/2015

Volume

6

Pages

260 - 265

Keywords

1-(2-fluoroethyl)-tryptophan, Tryptophan, indoleamine 2,3-dioxygenase, kynurenine, positron emission tomography, tryptophan 2,3-dioxygenase