Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Transplantation experiments have demonstrated that most mouse tumors express antigens that can constitute targets for rejection responses mediated by syngeneic T lymphocytes. For human tumors, autologous cultures mixing tumor cells and blood lymphocytes or tumor-infiltrating lymphocytes have produced CD8+ and CD4+ cytolytic T cell (CTL) clones that recognize tumor cells specifically. Attempts to identify the target antigens by biochemical fractionation of tumor cells up to now have failed, with the important exception of the identification of underglycosylated mucins present on breast and pancreatic carcinomas. Gene transfection approaches have proved more successful. A gene family named MAGE codes for antigens recognized by autologous CTL on a melanoma tumor. These genes are not expressed in normal tissues except for testis. They are expressed in many tumors of several histological types. Differentiation antigens coded by genes such as tyrosinase are also recognized on human melanoma by autologous CTL. The identification of human tumor rejection antigens opens new possibilities for systematic approaches to the specific immune therapy of cancer.

Original publication




Journal article


Annu Rev Immunol

Publication Date





337 - 365


Animals, Antigens, Neoplasm, Humans, Immunotherapy, Melanoma-Specific Antigens, Mucins, Neoplasm Proteins, Neoplasm Transplantation, Neoplasms, T-Lymphocytes