Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We showed previously that mouse mastocytoma P815 expresses several distinct antigens that are recognized by cytolytic T lymphocytes (CTL) of syngeneic DBA/2 mice. Antigens P815A and P815B are usually lost jointly and are targets for immune rejection responses in vivo. We used a cosmid library and a CTL stimulation assay to obtain transfectants expressing tumor rejection antigen P815A. From these transfectants we retrieved gene P1A which transferred the expression of both P815A and B. This gene is unrelated to three previously isolated genes coding for tum-antigens. It encodes a putative protein of 224 amino acids which contains two highly acidic domains showing homology with similar regions of nuclear proteins. The P1A gene expressed by tumor P815 is completely identical to the gene present in normal DBA/2 cells. Expression of the gene was tested by Northern blots. Cells from liver, spleen, and a number of mast cell lines were negative, but mast cell line L138.8A produced a high level of P1A message and was lysed by CTL directed against antigens P815A and B. We conclude that major tumor rejection antigens of P815 are encoded by a gene showing little or no expression in most normal cells of adult mice.

Original publication




Journal article


J Exp Med

Publication Date





1373 - 1384


Amino Acid Sequence, Animals, Antigen-Presenting Cells, Antigens, Neoplasm, Base Sequence, Blotting, Northern, Cloning, Molecular, Cytotoxicity, Immunologic, Gene Expression, Genes, H-2 Antigens, Immunity, Cellular, Mast-Cell Sarcoma, Mice, Mice, Inbred Strains, Molecular Sequence Data, Restriction Mapping, Tumor Cells, Cultured