Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Diffusion and interaction dynamics of molecules at the plasma membrane play an important role in cellular signalling. These have been suggested to be strongly associated with the actin cytoskeleton. Here, we utilise super-resolution STED microscopy combined with fluorescence correlation spectroscopy (STED-FCS) to access the sub-diffraction diffusion regime of different fluorescent lipid analogues and GPI-anchored proteins (GPI-APs) in the cellular plasma membrane, and compare it to the diffusion regime of these molecules in cell-derived actin-free giant plasma membrane vesicles (GPMVs). We show that phospholipids and sphingomyelin, which undergo hindered diffusion in the live cell membrane, diffuse freely in the GPMVs. In contrast to sphingomyelin, which is transiently trapped on molecular-scale complexes in intact cells, diffusion of the ganglioside lipid GM1 suggests transient incorporation into nanodomains, which is less influenced by the actin cortex. Finally, our data on GPI-APs indicate two molecular pools in living cells, one pool showing high mobility with trapped and compartmentalized diffusion, and the other forming immobile clusters both of which disappear in GPMVs. Our data underlines the crucial role of the actin cortex in maintaining hindered diffusion modes of most but not all membrane molecules.

Original publication

DOI

10.1101/076109

Type

Conference paper

Publication Date

19/09/2016