Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2018 Macmillan Publishers Ltd., part of Springer Nature. Plasmids have a major role in the development of disease caused by enteric bacterial pathogens. Virulence plasmids are usually large (>40 kb) low copy elements and encode genes that promote host-pathogen interactions. Although virulence plasmids provide advantages to bacteria in specific conditions, they often impose fitness costs on their host. In this Review, we discuss virulence plasmids in Enterobacteriaceae that are important causes of diarrhoea in humans, Shigella spp., Salmonella spp., Yersinia spp and pathovars of Escherichia coli. We contrast these plasmids with those that are routinely used in the laboratory and outline the mechanisms by which virulence plasmids are maintained in bacterial populations. We highlight examples of virulence plasmids that encode multiple mechanisms for their maintenance (for example, toxin-antitoxin and partitioning systems) and speculate on how these might contribute to their propagation and success.

Original publication

DOI

10.1038/s41579-018-0031-2

Type

Journal article

Journal

Nature Reviews Microbiology

Publication Date

01/08/2018

Volume

16

Pages

484 - 495