Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Super-resolution fluorescence microscopy combines the ability to observe biological processes beyond the diffraction limit of conventional light microscopy with all advantages of the fluorescence readout such as labelling specificity and non-invasive live-cell imaging. Due to their subdiffraction size (< 200 nm) viruses are ideal candidates for super-resolution microscopy studies, and Human Immunodeficiency Virus type 1 (HIV-1) is to date the most studied virus by this technique. This review outlines principles of different super-resolution techniques as well as their advantages and disadvantages for virological studies, especially in the context of live-cell imaging applications. We highlight the findings of super-resolution based HIV-1 studies performed so far, their contributions to the understanding of HIV-1 replication cycle and how the current advances in super-resolution microscopy may open new avenues for future virology research.

Original publication




Journal article



Publication Date





Fluorescence, HIV-1, Human immunodeficiency virus, Nanoscopy, Super-resolution microscopy, HIV, HIV Infections, HIV-1, Humans, Microscopy, Fluorescence, Molecular Imaging, Virus Replication