Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Objective: To evaluate an approach to measure β-cell function by frequent testing of C-peptide concentrations in dried blood spots (DBSs). Patients: Thirty-two children, aged 7 to 17 years, with a recent diagnosis of type 1 diabetes. Design: Mixed-meal tolerance test (MMTT) within 6 and again at 12 months after diagnosis, with paired venous and DBS C-peptide sampling at 0 and 90 minutes. Weekly DBS C-peptide before and after standardized breakfasts collected at home. Results: DBS and plasma C-peptide levels (n = 115) correlated strongly (r = 0·91; P < 0.001). The Bland-Altman plot indicated good agreement. The median number of home-collected DBS cards per participant was 24 over a median of 6.9 months. Repeated DBS C-peptide levels varied considerably within and between subjects. Adjustment for corresponding home glucose measurements reduced the variance, permitting accurate description of changes over time. The correlation of the C-peptide slope over time (assessed by repeated home DBS) vs area under the curve during the two MMTTs was r = 0.73 (P < 0.001). Mixed models showed that a 1-month increase in diabetes duration was associated with 17-pmol/L decline in fasting DBS C-peptide, whereas increases of 1 mmol/L in glucose, 1 year older age at diagnosis, and 100 pmol/L higher baseline plasma C-peptide were associated with 18, 17, and 61 pmol/L higher fasting DBS C-peptide levels, respectively. In addition, glucose responsiveness decreased with longer diabetes duration. Conclusion: Our approach permitted frequent assessment of C-peptide, making it feasible to monitor β-cell function at home. Evaluation of changes in the slope of C-peptide through this method may permit short-term evaluation of promising interventions.

Original publication

DOI

10.1210/jc.2018-00500

Type

Journal article

Journal

J Clin Endocrinol Metab

Publication Date

01/09/2018

Volume

103

Pages

3350 - 3358

Keywords

Adolescent, Area Under Curve, Blood Glucose, Blood Glucose Self-Monitoring, C-Peptide, Child, Correlation of Data, Diabetes Mellitus, Type 1, Dried Blood Spot Testing, Fasting, Feasibility Studies, Female, Humans, Male, Time Factors