Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

For successful blood-feeding, ticks must confront the host immune system comprising many cells and signaling molecules, mainly cytokines and growth factors. These factors bind to specific receptors on the cell membranes, thereby initiating a signaling cascade that leads to distinct cellular activities. Ticks are able to manipulate host immune responses via molecules secreted from their salivary glands. Saliva of ixodid ticks contains factors binding important cytokines and their subgroup, chemokines. Here we demonstrate that constituents of tick salivary gland extract (SGE) also appear to bind growth factors: transforming growth factor beta (TGF-β1), platelet-derived growth factor (PDGF), fibroblast growth factor (FGF-2), and hepatocyte growth factor (HGF), depending on tick species. SGE derived from Amblyommavariegatum reacted with TGF-β1, PDGF, FGF-2 and HGF; Dermacentorreticulatus and Rhipicephalusappendiculatus with TGF-β1, FGF-2 and HGF; and Ixodes ricinus and Ixodesscapularis with PDGF. SGE from the species targeting PDGF (A. variegatum and I. ricinus) also inhibited cell proliferation in vitro and induced a change in morphology of different cell lines. These effects correlated with disruption of the actin cytoskeleton. Such effects were not observed with SGE of the two species that did not target PDGF. Targeting of wound healing growth factors appears to be yet another strategy ixodid ticks adopt for suppression of inflammation and successful haematophagy.

Original publication




Journal article


Int J Parasitol

Publication Date





213 - 223


Actins, Animals, Cell Extracts, Cell Proliferation, Cytoskeleton, Female, Intercellular Signaling Peptides and Proteins, Ixodidae, Male, Protein Binding, Salivary Glands, Wound Healing