Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Background: Understanding the structure of a bacterial population is essential in order to understand bacterial evolution, or which genetic lineages cause disease, or the consequences of perturbations to the bacterial population. Estimating the core genome, the genes common to all or nearly all strains of a species, is an essential component of such analyses. The size and composition of the core genome varies by dataset, but our hypothesis was that variation between different collections of the same bacterial species should be minimal. To test this, the genome sequences of 3,121 pneumococci recovered from healthy individuals in Reykjavik (Iceland), Southampton (United Kingdom), Boston (USA) and Maela (Thailand) were analysed. Results: The analyses revealed a supercore genome (genes shared by all 3,121 pneumococci) of only 303 genes, although 461 additional core genes were shared by pneumococci from Reykjavik, Southampton and Boston. Overall, the size and composition of the core genomes and pan-genomes among pneumococci recovered in Reykjavik, Southampton and Boston were very similar, but pneumococci from Maela were distinctly different. Inspection of the pan-genome of Maela pneumococci revealed several >25 Kb sequence regions that were homologous to genomic regions found in other bacterial species. Conclusions: Some subsets of the global pneumococcal population are highly heterogeneous and thus our hypothesis was rejected. This is an essential point of consideration before generalising the findings from a single dataset to the wider pneumococcal population.

Type

Journal article

Journal

Frontiers in Microbiology

Publisher

Frontiers Media

Publication Date

11/02/2019