Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Near 60% of new HIV infections in the United Kingdom are estimated to occur in men who have sex with men (MSM). Patterns of mixing between different risk groups of MSM have been suggested to spread the HIV epidemics through age-disassortative partnerships and to contribute to ethnic disparities in infection rates. Understanding these mixing patterns in transmission can help to determine which groups are at a greater risk and guide prevention.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>We analyzed combined epidemiologic data and viral sequences from MSM diagnosed with HIV as of mid-2015 at the national level. We applied a phylodynamic source attribution model to infer patterns of transmission between groups of patients by age, ethnicity and region.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>From pair probabilities of transmission between 19 847 MSM patients, we found that potential transmitters of HIV subtype B were on average 5 months older than recipients. We also found a moderate overall assortativity of transmission by ethnic group and a stronger assortativity by region.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>Our findings suggest that there is only a modest net flow of transmissions from older to young MSM in subtype B epidemics and that young MSM, both for Black or White groups, are more likely to be infected by one another than expected in a sexual network with random mixing.</jats:p></jats:sec>

Original publication

DOI

10.1101/342774

Type

Working paper

Publisher

Cold Spring Harbor Laboratory

Publication Date

17/06/2018