Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Trypanosoma brucei is a flagellated protozoan with a highly polarized cellular structure. TbLRTP is a trypanosomal protein containing multiple SDS22-class leucine-rich repeats and a coiled-coil domain with high similarity to a mammalian testis-specific protein of unknown function. Homologues are present in a wide range of higher eukaryotes including zebra fish, where the gene product has been implicated in polycystic kidney disease. Western blot analysis and immunofluorescence with antibodies against recombinant TbLRTP indicate that the protein is expressed throughout the trypanosome life cycle and localizes to distal zones of the basal bodies. Overexpression and RNA interference demonstrate that TbLRTP is important for faithful basal body duplication and flagellum biogenesis. Expression of excess TbLRTP suppresses new flagellum assembly, while reduction of TbLRTP protein levels often results in the biogenesis of additional flagellar axonemes and paraflagellar rods that, most remarkably, are intracellular and fully contained within the cytoplasm. The mutant flagella are devoid of membrane and are often associated with four microtubules in an arrangement similar to that observed in the normal flagellar attachment zone. Aberrant basal body and flagellar biogenesis in TbLRTP mutants also influences cell size and cytokinesis. These findings demonstrate that TbLRTP suppresses basal body replication and subsequent flagellar biogenesis and indicate a critical role for the LRTP family of proteins in the control of the cell cycle. These data further underscore the role of aberrant flagellar biogenesis as a disease mechanism.

Original publication




Journal article


Mol Cell Biol

Publication Date





3774 - 3783


Amino Acid Sequence, Animals, Cell Division, Evolution, Molecular, Flagella, Molecular Sequence Data, Mutation, Polycystic Kidney Diseases, Protozoan Proteins, RNA Interference, Sequence Alignment, Trypanosoma brucei brucei