Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Sphingomyelin (SM) is abundant in the outer leaflet of the cell plasma membrane, with the ability to concentrate in so-called lipid rafts. These specialized cholesterol-rich microdomains not only are associated with many physiological processes but also are exploited as cell entry points by pathogens and protein toxins. SM binding is thus a widespread and important biochemical function, and here we reveal the molecular basis of SM recognition by the membrane-binding eukaryotic cytolysin equinatoxin II (EqtII). The presence of SM in membranes drastically improves the binding and permeabilizing activity of EqtII. Direct binding assays showed that EqtII specifically binds SM, but not other lipids and, curiously, not even phosphatidylcholine, which presents the same phosphorylcholine headgroup. Analysis of the EqtII interfacial binding site predicts that electrostatic interactions do not play an important role in the membrane interaction and that the two most important residues for sphingomyelin recognition are Trp112 and Tyr113 exposed on a large loop. Experiments using site-directed mutagenesis, surface plasmon resonance, lipid monolayer, and liposome permeabilization assays clearly showed that the discrimination between sphingomyelin and phosphatidylcholine occurs in the region directly below the phosphorylcholine headgroup. Because the characteristic features of SM chemistry lie in this sub-interfacial region, the recognition mechanism may be generic for all SM-specific proteins. © 2008 by The American Society for Biochemistry and Molecular Biology, Inc.

Original publication

DOI

10.1074/jbc.M708747200

Type

Journal article

Journal

Journal of Biological Chemistry

Publication Date

04/07/2008

Volume

283

Pages

18665 - 18677