Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Microsatellites are now used ubiquitously as genetic markers. One important application is to the assessment of population subdivision and phylogenetic relatedness. Such applications require a method of estimation of genetic distance. Here we examine the most widely used measure of microsatellite genetic distance, Goldstein et al.'s delta-mu squared ([delta mu]2), with respect to a large data set of 213 markers typed across samples from four diverse human populations. We find that (delta mu)2 yields plausible interpopulation distances. For the first time, we report significant interpopulation differences in mean microsatellite length, although the effect of these differences on (delta mu)2 is negligible. However, we also show that the method is extremely sensitive to one or two loci that contribute extreme values, even when a sample size of >200 loci is used. Some of these extreme loci can be removed on the grounds that some alleles carry large indels, but for others there is no clear justification for exclusion a priori. Our data suggest a rather recent African/non-African split, with an upper limit of some 70,000-80,000 years ago.

Original publication

DOI

10.1086/302574

Type

Journal article

Journal

Am J Hum Genet

Publication Date

10/1999

Volume

65

Pages

1125 - 1133

Keywords

Africa, Alleles, Chromosome Mapping, Gene Frequency, Genetic Linkage, Genetic Markers, Heterozygote, Humans, India, Italy, Least-Squares Analysis, Microsatellite Repeats, Phylogeny, Sample Size, Sensitivity and Specificity, Time Factors