Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Sixty fresh Plasmodium falciparum isolates obtained from Gambian children with mild or cerebral malaria were investigated by transmission electron microscopy for the expression of knob-like protrusions (K+) on the surface of the infected erythrocytes. More than six-hundred infected erythrocytes were analyzed. Knob-forming parasites were present in all 60 isolates. Although knobless parasites (K-) were found in 25 (42%) of the isolates, only 39 were K-, while 577 were K+. Nine of the 39 K- infected erythrocytes that were studied in greater detail appeared to be asexual parasites because they were either segmented or they lacked mitochondrial DNA-like filaments and cristae, which are abundant in immature gametocytes. No difference was observed in the relative frequency of K+K- infected erythrocytes in isolates from patients with mild or cerebral malaria. Binding of both knobby and knobless infected erythrocytes to autologous leukocytes including monocytes, neutrophils, lymphocytes and plasma cells was found in some of the primary in vitro cultures. By using P. falciparum laboratory strains of known phenotypes and leukocytes from healthy blood bank donors, it was established that this novel adherence phenomenon was related to that of cytoadherence to certain melanoma or endothelial cells. Cytoadherent infected erythrocytes that bind to leukocytes enhance antibody-independent phagocytosis and induce cellular aggregation, while non-cytoadherent or rosetting infected erythrocytes do not.(ABSTRACT TRUNCATED AT 250 WORDS)

Original publication

DOI

10.4269/ajtmh.1992.46.511

Type

Journal article

Journal

Am J Trop Med Hyg

Publication Date

05/1992

Volume

46

Pages

511 - 519

Keywords

Animals, Cell Adhesion, Cell Aggregation, Child, Erythrocytes, Humans, Leukocytes, Malaria, Cerebral, Malaria, Falciparum, Melanoma, Microscopy, Electron, Phagocytosis, Phenotype, Plasmodium falciparum, Tumor Cells, Cultured