Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Scratch assays are in-vitro methods for studying cell migration. In these experiments, a scratch is made on a cell monolayer and recolonisation of the scratched region is imaged to quantify cell migration rates. Typically, scratch assays are modelled by reaction diffusion equations depicting cell migration by Fickian diffusion and modelling proliferation by a logistic term. In a recent paper (Jin, W. et al. Bull Math Biol (2017)), the authors observed experimentally that during the early stage of the recolonisation process, there is a disturbance phase where proliferation is not logistic, and this is followed by a growth phase where proliferation appears to be logistic. The authors did not identify the precise mechanism that causes the disturbance phase but showed that ignoring it can lead to incorrect parameter estimates. The aim of this work is to show that a non-linear age-structured population model can account for the two phases of proliferation in scratch assays. The model consists of an age-structured cell cycle model of a cell population, coupled with an ordinary differential equation describing the resource concentration dynamics in the substrate. The model assumes a resource-dependent cell cycle threshold age, above which cells are able to proliferate. By studying the dynamics of the full system in terms of the subpopulations of cells that can proliferate and the ones that can not, we are able to find conditions under which the model captures the two-phase behaviour. Through numerical simulations we are able to show that the resource concentration in the substrate regulates the biphasic dynamics.

Original publication

DOI

10.1101/540526

Type

Journal article

Journal

Bulletin of Mathematical Biology

Publisher

Springer (part of Springer Nature)

Publication Date

14/02/2019

Volume

81

Pages

2706 - 2724

Total pages

19