Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Genetic exchange plays a defining role in the evolution of many bacteria. The recent accumulation of nucleotide sequence data from multiple members of diverse bacterial genera has facilitated comparative studies that have revealed many features of this process. Here we focus on genetic exchange that has involved homologous recombination and illustrate how nucleotide sequence data have furthered our understanding of: (i) the frequency of recombination; (ii) the impact of recombination in different parts of the genome; and (iii) patterns of gene flow within bacterial populations. Summarizing the results obtained for a range of bacteria, we survey evidence indicating that the extent and nature of recombination vary widely among microbiological species and often among lineages assigned to the same microbiological species. These results have important implications in studies ranging from epidemiological investigations to examination of the bacterial species problem.

Original publication

DOI

10.1016/j.tim.2010.04.002

Type

Journal article

Journal

Trends Microbiol

Publication Date

07/2010

Volume

18

Pages

315 - 322

Keywords

Bacteria, Evolution, Molecular, Gene Flow, Recombination, Genetic