Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

<ns4:p>In the genomics era computational biologists regularly need to process, analyse and integrate large and complex biomedical datasets. Analysis inevitably involves multiple dependent steps, resulting in complex pipelines or workflows, often with several branches. Large data volumes mean that processing needs to be quick and efficient and scientific rigour requires that analysis be consistent and fully reproducible. We have developed CGAT-core, a python package for the rapid construction of complex computational workflows. CGAT-core seamlessly handles parallelisation across high performance computing clusters, integration of Conda environments, full parameterisation, database integration and logging. To illustrate our workflow framework, we present a pipeline for the analysis of RNAseq data using pseudo-alignment.</ns4:p>

Original publication

DOI

10.12688/f1000research.18674.1

Type

Journal article

Journal

F1000Research

Publisher

F1000 ( Faculty of 1000 Ltd)

Publication Date

04/04/2019

Volume

8

Pages

377 - 377